Slepian spatial-spectral concentration on the ball
نویسندگان
چکیده
منابع مشابه
Slepian Spatial-Spectral Concentration on the Ball
We formulate and solve the Slepian spatial-spectral concentration problem on the three-dimensional ball. Both the standard Fourier-Bessel and also the Fourier-Laguerre spectral domains are considered since the latter exhibits a number of practical advantages (spectral decoupling and exact computation). The Slepian spatial and spectral concentration problems are formulated as eigenvalue problems...
متن کاملSmall Ball Probabilities for the Slepian Gaussian Fields
The d-dimensional Slepian Gaussian random field {S(t), t ∈ R+} is a mean zero Gaussian process with covariance function ES(s)S(t) = ∏d i=1 max(0, ai − |si − ti|) for ai > 0 and t = (t1, · · · , td) ∈ R+. Small ball probabilities for S(t) are obtained under the L2-norm on [0, 1]d, and under the sup-norm on [0, 1]2 which implies Talagrand’s result for the Brownian sheet. The method of proof for t...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملon the relationship between linguistic, visual-spatial, interpersonal intelligences and technical translation quality
abstract this study tried to investigate whether there was any significant relationship between technical translation quality of the senior english translation students and their levels of verbal-linguistic, visual-spatial and interpersonal intelligences. in order to investigate the research questions, the researcher selected a hundred senior english translation students from three universitie...
On the Concentration of Spectral Properties
We consider the problem of measuring the eigenvalues of a randomly drawn sample of points. We show that these values can be reliably estimated as can the sum of the tail of eigenvalues. Furthermore, the residuals when data is projected into a subspace is shown to be reliably estimated on a random sample. Experiments are presented that confirm the theoretical results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2016
ISSN: 1063-5203
DOI: 10.1016/j.acha.2015.03.008